Station Météo

Ce kit permet de lire les données météo fournies par plusieurs capteurs :

- BME280/BMP280 sur I2C 3.3v température/hygrométrie/pression-barométrique
- AHT20 sur I2C 3.3v température/hygrométrie
- BH1750 sur I2C 5v brillance et exposition
- Pluviomètre (boucle sèche)
- Anémomètre/girouette en RS485

Il est géré par un module microcontrôleur ESP-32-S3.

Caractéristiques principales :

- Nécessite un accès WiFi pour envoyer les données.
- Envoi des données Météo au format JSON (sélectionnable et/ou) :
 - par trames TCP sur le port 1119 (configurable)
 - en MQTT sur le port 1883 (configurable)
- Configuration par pages WEB
- Alimentation 7-18V (< 40mA suivant configuration)

Jean-Paul ROUBELAT – F6FBB

Sommaire

1. Configuration
2. Page accueil
2.1. Configure WiFi 5
2.2. Configure Station6
2.3. Configure MQTT
2.4. Configure Sensors
2.5. Informations
2.6. Update
3. Données météo11
3.1. Données serveur météo au format JSON11
3.2. Données serveur MQTT au format JSON11
4. Etat du module
5. Schéma et carte électronique13
6. Connexion des capteurs14
6.1. Capteur de lumière BH175014
6.2. Capteur de température/hygrométrie/pression BME18014
6.3. Capteur de température/hygrométrie/pression AHT20/BMP18014
6.4. Pluviomètre MS-WH-SP-RG15
6.5. Anémomètre - Girouette RY-FSX15
6.6. Réalisation du boitier capteur BME18016
7. Remerciements

1. Configuration

Le serveur est configuré par des pages WEB accessibles par Wifi. A la mise sous tension, quelques secondes sont nécessaires pour que le Wifi soit activé.

Depuis votre ordinateur personnel ou votre smartphone, cherchez le réseau Wifi « STATION » et connectez-le.

Après la connexion au Wifi « STATION », une page d'accueil s'affiche au bout de quelques secondes. Cette page va permettre de configurer le serveur.

Si vous êtes bien connecté au Wifi « STATION » mais la fenêtre ne s'affiche pas, vous pouvez la connecter à l'adresse <u>http://192.168.4.1</u>

2. Page accueil

La page d'accueil propose un accès à :

- Configure WiFi : configuration Wifi pour la connexion au réseau local,
- Configure Station : Une fenêtre d'information générale du serveur
- Configure MQTT : La configuration éventuelle du MQTT
- **Configure Sensors** : La configuration des capteurs
- Info : Informations techniques sur la configuration
- Restart : Le redémarrage du serveur
- Update : La mise à jour du logiciel par OTA (Over The Air)
- Caractéristiques du point d'accès (non renseignées lors de la mise en service)

Station météo v0.9.7 STATION
Configure WiFi
Configure Station
Configure MQTT
Configure Sensors
Info
Restart
Update
No AP set

2.1. Configure WiFi

Page de configuration du Wifi :

- Liste des réseaux disponibles avec le niveau de sécurité et de signal.
- Le Point d'accès Wifi (SSID)
- Le mot de passe du point d'accès sélectionné
- Le bouton de sauvegarde
- Le bouton de rappel des paramètres enregistrés
- Le retour à la page d'accueil.

FreeWifi_secure	h. A
JPFREE	h. e
GiPe2	h. e
F190	a al
PWS_6624	a al
FREEBOX_TONY_45	a .il
SSID	
Password	
Show Password	
Save	
Pofrash	
Nellesii	
Back	
No AP set	
Back No AP set	

Toute modification devra être enregistrée par le bouton « Save »

2.2. Configure Station

Page de configuration de l'accès au serveur Météo. Laisser le champ « server address » vide pour invalider l'accès.

- **Station name** : Nom de la station. Permettra l'accès aux données.
- Station longitude : Longitude Ouest en degrés décimaux,
- Station latitude : Latitude Nord en degrés décimaux
- Station altitude : Altitude en mètres
- Station period : Périodicité d'envoi des données météo entre 5 et 300 secondes
- Server address : Adresse IP ou nom de domaine du serveur chalabre.f6fbb.org).
- Server port : port TCP du serveur (défaut 1119).
- Automatic updates : autorise la mise à jour automatique quand une nouvelle version est disponible.
- Le bouton **Save** valide et enregistre la configuration.
- Le bouton **Back** retourne à la page d'accueil.

station name
STATION
station longitude (ddeg, W)
1.5
station latitude (ddeg, N)
43.053
station altitude (meters)
380
station period (5 -> 300 seconds)
20
meteo server address
192.168.11.1
meteo server port
1119
Automatic updates
Save
Cave
Back
Connected to JPFREE with IP 192.168.11.103

Toute modification devra être enregistrée par le bouton « Save »

2.3. Configure MQTT

Page de configuration de l'accès au serveur MQTT. Laisser le champ « mqtt server address » vide pour invalider l'accès.

- mqtt server address : Adresse IP ou nom de domaine du serveur MQTT.
- mqtt server port: Port du serveur MQTT (1883 par défaut),
- mqtt server user: Nom d'utilisateur ou vide si pas d'authentification.
- mqtt server password: Mot de passe ou vide si pas d'authentification.

mqtt server address
192.168.11.1
mqtt server port
1883
mqtt server user
mqtt server password
Save
Back
Connected to JPFREE with IP 192.168.11.102

Toute modification devra être enregistrée par le bouton « Save »

2.4. Configure Sensors

Cette fenêtre permet d'ajuster la précision des capteurs.

Pressure altitude correction
Temperature multiplier nationsappluyeasur fill
1
Temperature offset
0
Hygrometry multiplier
1
Hygrometry offset
Pressure multiplier
light multiplier
Wind speed multiplier
1
Wind direction offset
0
Rain cup (mm)
0.3
Voltage multiplier
0.974
Save
Back
Connected to JPFREE with IP 192.168.11.90

- La case à cocher « Pressure altitude correction » permet de corriger la pression atmosphérique en fonction de l'altitude spécifié dans « Configure station ».
- La température, l'hygrométrie et la pression sont multipliées par « multiplier » puis l' « offset » est ajouté.
- La mesure de lumière et la vitesse du vent sont multipliées par « multiplier ».
- L' « offset » est ajouté à la direction du vent.
- La taille du godet (en mm de pluie) du pluviomètre peut être redéfinie.
- La mesure de la tension d'alimentation est multipliée par « multiplier ».

2.5. Informations

Cette page affiche les informations techniques concernant les capteurs, le micro-controleur et la configuration réseau suivies de 3 boutons :

- Erase Wifi Config : Efface la configuration Wifi, Point d'accès (SSID) et mot de passe.
- **Back** : retour à la page d'accueil.

Connected to GiPe2 with IP 192.168.11.90
Sensors
BH1750 I2C 0x23 BME180 I2C 0x76 Anemometer RS485 0x00
ESP32-S3
Uptime 0 mins 32 secs
Chip ID 6dbdf5f0
Chip rev 1
Hostname STATION
Station MAC F0:F5:BD:6D:D2:D8
Access point IP 0.0.0.0
Access point MAC 00:00:00:00:00:00
Access point hostname
BSSID 68:A3:78:80:2D:D7
About
WiFiManager v2.0.17
Arduino 3.0.1
Build date Aug 11 2024 16:01:18
Erase WiFi config
Back

2.6. Update

La station teste toutes les 5 minutes si une nouvelle version existe sur le serveur de mise à jour. Si tel est le cas la mise à jour sera automatique. Aucune action ne sera nécessaire.

Cette page permet de mettre à jour manuellement le firmware de l'ESP-32-S3.

- Choisir le fichier firmware_n_n_n.bin (n_n_n étant la version du firmware) puis,
- Lorsque le fichier a été sélectionné, appuyer sur « Update ».
- Lorsque le fichier a été complètement chargé dans le microcontroleur, celui-ci va redémarrer et la nouvelle version du logiciel sera installée.

- Après quelques minutes, le serveur sera de nouveau opérationnel.
- Les firmwares sont disponibles sur https://update.f6fbb.org/gps_server/

3. Données météo

3.1. Données serveur météo au format JSON

Si l'accès au serveur météo est validé, la station envoie toutes les périodes une trame TCP au format JSON.

Cette trame est de la forme suivante :

```
{"station":"STATION","version":"0.9.3","date":1723216796,"serial":3,
"uptime":152,"ruptime":0,"next":30,"long":1.50000,"lati":43.05300,"a
lti":198,"battery":14.05,"tempe":26.32,"hygro":58.20,"baro":977.68,"
light":47,"expos":12,"wind":12.60,"winmax":15.80,"windir":132.0,"win
dev":3,"rain":2}
```

3.2. Données serveur MQTT au format JSON

Si l'accès au serveur MQTT est validé, la station envoie toutes les périodes une trame MQTT au format JSON.

La donnée est de la forme suivante :

```
tele/NomDeLaStation/METEO {"Time":"2024-08-11T16:37:56+0200",
"battery":13.40,"tempe":26.38,"hygro":59.78,"baroX":970.13,
"light":180,"expos":15,"wind":12.30,"winmax":18.50,"windir":257.0,
"windev":15,"rain":0}
```

- baroX est baroo si la pression est brute.
- baroX est barom si la pression est corrigée en altitude cf §Configure Sensors.

Toutes les 5 minutes, une trame de status est envoyée :

```
tele/NomDeLaStation/STATE {"Time":"2024-08-11T16:40:00+0200",
"Uptime":"0T00:21:19","version":"0.9.9","station":"STATION",
"longitude":1.50000,"latitude":43.05300,"altitude":380",
"Wifi":{"AP":1,"SSId":"JPFREE","RSSI":54,"APMac":"F0:F5:BD:6D:D2:D8"
,"LocalIP":"192.168.11.102"}}
```

4. Etat du module

La LED de l'ESP-32-S3 donne l'information sur l'état du serveur. Le hachurage indique une connexion, rouge=WiFi seulement, vert=TCP, bleu=MQTT, jaune=TCP+MQTT :

Lorsque le serveur est connecté au réseau, il est possible d'accéder à la page de configuration par l'url <u>http://station.local</u> où **station** sera remplacé par le nom de la station.

L'ensemble des pages est décrit au paragraphe 2.

Il est possible d'effacer l'ensemble des paramètres (retour paramètres usine) en connectant puis coupant l'alimentation dès le démarrage du clignotement rapide, et ce 6 fois de suite.

5. Schéma et carte électronique

6. Connexion des capteurs

6.1. Capteur de lumière BH1750

Ce capteur est alimenté en 5V et sera raccordé sur le connecteur I2C 5V.

Le fil jaune (adresse I2C) n'est pas utilisé.

6.2. Capteur de température/hygrométrie/pression BME180

Ce capteur est alimenté en 3V3 et sera raccordé sur le connecteur I2C 3V3.

Les broches CSB et SDD ne sont pas utilisées.

6.3. Capteur de température/hygrométrie/pression AHT20/BMP180

Ce capteur hybride est alimenté en 3V3 et sera raccordé sur le connecteur I2C 3V3. Il remplace le capteur BME180.

La précision température et hygrométrie est meilleure que le BME280.

6.4. Pluviomètre MS-WH-SP-RG

Ce pluviomètre à godets génère une boucle sèche à chaque basculement de godet. Le logiciel compte le nombre de boucles pendant chaque période. La connexion n'est pas polarisée, les deux fils du pluviomètre sont à raccorder sur le connecteur à 2 broches.

6.5. Anémomètre - Girouette RY-FSX

Le logiciel interface un anémomètre de type RY-FSX. La communication se fait en RS485 au protocole ModBusRTU via un câble à 4 fils. Ces fils sont à raccorder sur le connecteur RS485 en respectant les couleurs.

- Noir : Gnd
- Rouge : +12V
- Jaune : A
- Vert : B

L'anémomètre – girouette est alimenté en 12v. Le cavalier d'alimentation sera positionné en fonction.

Le cavalier d'alimentation doit être sur la position 12V.

6.6. Réalisation du boitier capteur BME180

Le boitier a été réalisé à partir de la description de ZeSanglier sur <u>thingiverse</u>. Le support à été refait pour ne supporter que le BME280.

L'impression est faite en ASA ou PETG pour la robustesse aux UV.

Pour la partie externe imprimer les fichiers :

- holder2.stl, Stand_round.stl, base.stl
- holder.stl, cup_0.stl,
- cup_1.stl en triple exemplaire

- cup_2.stl : mettre en pose à la couche 52 (couches de 0.2mm) pour insérer les écrous M4

dans les quatre alvéoles, puis continuer l'impression.

- support_BME280 v10.stl ou support_AHT_BMP.stl

Monter l'ensemble à l'aide de quatre vis BTR Allen M4x80

7. Remerciements

La réalisation logicielle est de ma conception. Ce logiciel fonctionne sur la carte Météo qui intègre l'alimentation 12v, l'ESP-32-S3 et le module RS485.

Le logiciel est écrit en C/C++ sous l'environnement « platformio / vscode » et inclut plusieurs librairies tierces ESP32 suivant le code généré.

Jean-Paul ROUBELAT – F6FBB